
The Canadian Journal of Statistics
Vol. 45, No. 1, 2017, Pages 77–94
La revue canadienne de statistique

77

A new method for robust mixture regression
Chun YU1*, Weixin YAO2 and Kun CHEN3

1School of Statistics, Jiangxi University of Finance and Economics, Nanchang 330013, P. R. China
2Department of Statistics, University of California, Riverside, CA 92521, U.S.A.
3Department of Statistics, University of Connecticut, Storrs, CT 06269, U.S.A.

Key words and phrases: EM algorithm; mixture regression models; outlier detection; penalized likelihood.

MSC 2010: Primary 62F35; secondary 62J99

Abstract: Finite mixture regression models have been widely used for modelling mixed regression relation-
ships arising from a clustered and thus heterogenous population. The classical normal mixture model, despite
its simplicity and wide applicability, may fail in the presence of severe outliers. Using a sparse, case-specific,
and scale-dependent mean-shift mixture model parameterization, we propose a robust mixture regression
approach for simultaneously conducting outlier detection and robust parameter estimation. A penalized
likelihood approach is adopted to induce sparsity among the mean-shift parameters so that the outliers are
distinguished from the remainder of the data, and a generalized Expectation–Maximization (EM) algorithm
is developed to perform stable and efficient computation. The proposed approach is shown to have strong con-
nections with other robust methods including the trimmed likelihood method and M-estimation approaches.
In contrast to several existing methods, the proposed methods show outstanding performance in our simu-
lation studies. The Canadian Journal of Statistics 45: 77–94; 2017 © 2016 Statistical Society of Canada

Résumé: Les modèles de régression à mélange fini sont largement utilisés pour modéliser la relation de
régression mixte qui émerge de données par grappes issues de populations hétérogènes. Malgré sa simplicité
et sa large applicabilité, le modèle de mélange normal classique peut échouer en présence de valeurs fortement
aberrantes. Les auteurs proposent un modèle de mélange à décalage des moyennes dont la paramétrisation
clairsemée et spécifique au cas dépend de l’échelle. Ils proposent une méthode robuste de régression par
mélange qui détecte les valeurs aberrantes et estime les paramètres simultanément. Ils adoptent une approche
par vraisemblance pénalisée qui force les paramètres de décalage à être clairsemés afin que les valeurs aber-
rantes se démarquent des autres données. Ils développent également un algorithme d’espérance-maximisation
(EM) qui permet des calculs stables et efficaces. Les auteurs montrent que leur méthode possède de forts liens
avec d’autres approches robustes, notamment la vraisemblance tronquée et les M-estimateurs. Ils présentent
des simulations dans le cadre desquelles leur approche offre une performance exceptionnelle contrairement
à de nombreuses méthodes existantes. La revue canadienne de statistique 45: 77–94; 2017 © 2016 Société
statistique du Canada

1. INTRODUCTION

Given n observations of the response Y ∈ R and predictor X ∈ Rp multiple linear regression
models are commonly used to explore the conditional mean structure of Y given X, where p is the
number of independent variables and R is the set of real numbers. However in many applications
the assumption that the regression relationship is homogeneous across all the observations
(y1, x1), . . . , (yn, xn) does not hold. Rather the observations may form several distinct clusters
indicating mixed relationships between the response and the predictors. Such heterogeneity
can be more appropriately modelled by a “finite mixture regression model” consisting of, say,
m homogeneous linear regression components. Specifically it is assumed that a regression
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model holds for each of the m components, that is, when (y, x) belongs to the jth component
(j = 1, 2, . . . , m), y = x�βj + εj , where βj ∈ Rp is a fixed and unknown coefficient vector,
and εj ∼ N(0, σ2

j ) with σ2
j > 0. (The intercept term can be included by setting the first element

of each x vector as 1). The conditional density of y given x, is

f (y | x, θ) =
m∑

j=1

πjφ
(
y; x�βj, σ

2
j

)
, (1)

where φ(· ; μ, σ2) denotes the probability density function (pdf) of the normal distribution
N(μ, σ2), the πj are mixing proportions, and θ = (π1, β1, σ1; . . . ; πm, βm, σm) represents all of
the unknown parameters.

As it was first introduced by Goldfeld & Quandt (1973) the above mixture regression model
has been widely used in business, marketing, social sciences, etc; see, for example, Böhning
(1999), Jiang & Tanner (1999), Hennig (2000), McLachlan & Peel (2000), Wedel & Kamakura
(2000), Skrondal & Rabe-Hesketh (2004), and Frühwirth-Schnatter (2006). Maximum likelihood
estimation (MLE) is commonly carried out to infer θ in (1), that is,

θ̂mle = arg max
θ

n∑
i=1

log

⎧⎨⎩
m∑

j=1

πjφ
(
yi; x�

i βj, σ
2
j

)⎫⎬⎭ .

The θ̂mle does not have an explicit form in general and it is usually obtained by the Expectation–
Maximization (EM) (algorithm Dempster, Laird, & Rubin, 1977).

Although the normal mixture regression approach has greatly enriched the toolkit of regression
analysis due to its simplicity it can be very sensitive to the presence of gross outliers, and failing
to accommodate these may greatly jeopardize both model estimation and inference. Many robust
methods have been developed for mixture regression models. Markatou (2000) and Shen, Yang,
& Wang (2004) proposed to weight each data point in order to robustify the estimation procedure.
Neykov et al. (2007) proposed to fit the mixture model using the trimmed likelihood method.
Bai, Yao, & Boyer (2012) developed a modified EM algorithm by adopting a robust criterion in
the M-step. Bashir & Carter (2012) extended the idea of the S-estimator to mixture regression.
Yao, Wei, & Yu (2014) and Song, Yao, & Xing (2014) considered robust mixture regression using
a t-distribution and a Laplace distribution, respectively. There has also been extensive work in
linear clustering; see, for example, Hennig (2002, 2003), Mueller & Garlipp (2005), and Garcı́a-
Escudero et al. (2009, 2010).

Motivated by She & Owen (2011), Lee, MacEachern, & Jung (2012), and Yu, Chen, & Yao
(2015) we propose a “robust mixture regression via mean shift penalization approach (RM2)”
to conduct simultaneous outlier detection and robust mixture model estimation. Our method
generalizes the robust mixture model proposed by Yu, Chen, & Yao (2015) and can handle more
general supervised learning tasks. Under the general framework of mixture regression several
new challenges are present for adopting the regularization methods. For example maximizing the
mixture likelihood is a nonconvex problem, which complicates the computation; as the mixture
components may have unequal variances even the definition of an outlier becomes ambiguous, as
the scale of the outlying effect of a data point may vary across different regression components.

Several prominent features make our proposed RM2 approach attractive. First instead of us-
ing a robust estimation criterion or complex heavy-tailed distributions to robustify the mixture
regression model our method is built upon a simple normal mixture regression model so as to
facilitate computation and model interpretation. Second we adopt a sparse and scale-dependent
mean-shift parameterization. Each observation is allowed to have potentially different outlying
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effects across different regression components, which is much more flexible than the setup consid-
ered by Yu, Chen, & Yao (2015). An efficient thresholding-embedded generalized EM algorithm
is developed to solve the nonconvex penalized likelihood problem. Third we establish connections
between RM2 and some familiar robust methods including the trimmed likelihood and modified
M-estimation methods. The results provide justification for the proposed methods and, at the same
time, shed light on their robustness properties. These connections also apply to special cases of
mixture modelling. Compared to existing robust methods RM2 allows an efficient solution via the
celebrated penalized regression approach, and different information criteria (such as AIC and BIC)
can then be used to adaptively determine the proportion of outliers. Through extensive simulation
studies RM2 is demonstrated to be highly robust to both gross outliers and high leverage points.

2. ROBUST MIXTURE REGRESSION VIA MEAN-SHIFT PENALIZATION

2.1. Model Formulation
We consider the robust mixture regression model

f (yi | xi, θ, γi) =
m∑

j=1

πjφ
(
yi; x�

i βj + γijσj, σ
2
j

)
for i = 1, . . . , n, (2)

where θ = (π1, β1, σ1, . . . , πm, βm, σm)�. Here, for each observation, a mean-shift parameter,
γij , is added to its mean structure in each mixture component; we refer to (2) as a mean-shifted
normal mixture model (RM2). Define γ i = (γi1, . . . , γim)� as the mean-shift vector for the ith
observation for i = 1, . . . , n, and let � = (γ�

1 , . . . , γ�
n )� collect all the mean-shift parameters.

Without any constraints on the mean-shift parameters in (2) the model is over-parameterized.
The essence of (2) lies in the additional sparsity structures which are imposed on the parameters γij:
we assume many of the γij are in fact zero, corresponding to the typical observations; and only a
few γij are nonzero, corresponding to the outliers. Promoting sparsity of γij in estimation provides
a direct way for identifying and accommodating outliers in the mixture regression model. Also
note that the outlying effect is made case-specific, component-specific, and scale-dependent, that
is, the outlying effect of the ith observation to the jth component is modelled by γijσj , depending
directly on the scale of the jth component. This setup is thus much more flexible than the structure
considered by Yu, Chen, & Yao (2015) in the context of a mixture model. In our model each γij

parameter becomes scale-free and can be interpreted as the number of standard deviations shifted
from the mixture regression structure.

The model framework developed in (2) inherits the simplicity of the normal mixture model,
and it allows us to take advantage of celebrated penalized estimation approaches (Tibshirani,
1996; Fan & Li, 2001; Zou, 2006; Huang, Ma, & Zhang, 2008) for achieving robust estimation.
For a comprehensive account of penalized regression and variable selection techniques, see, for
example, Bühlmann & van de Geer (2009) and Huang, Breheny, & Ma (2012). For model (2), we
propose a penalized likelihood approach for estimation,

(θ̂, �̂) = arg max
θ,�

Jn(θ, �), (3)

where

Jn(θ, �) = ln(θ, �) −
n∑

i=1

Pλ(γ i),

ln(θ, �) =
n∑

i=1

log

⎧⎨⎩
m∑

j=1

πjφ
(
yi − γijσj − x�

i βj; 0, σ2
j

)⎫⎬⎭
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is the log-likelihood function, and Pλ(·) is a penalty function chosen to induce either element- or
vector-wise sparsity of its argument which is a vector with a tuning parameter λ controlling the
degrees of penalization. Similar to that of the traditional mixture model (1) the above penalized
log-likelihood is also unbounded. That is the penalized log-likelihood goes to infinity when yi =
x�
i βj + γijσj , and σj → 0 (Hathaway, 1985, 1986; Chen, Tan, & Zhang, 2008; and Yao, 2010).

To circumvent this problem, following Hathaway (1985, 1986), we restrict (σ1, . . . , σm) ∈ �σ ,
with �σ defined as

�σ = {(σ1, . . . , σm) : σj > 0 for 1 ≤ j ≤ m; and σj/σk ≥ ε

for j �= k and 1 ≤ j, k ≤ m}, (4)

where ε is a very small positive value. In the examples that follow we set ε = 0.01. Accordingly
we define the parameter space of θ as

� = {(πj, βj, σj), j = 1, . . . , m : 0 ≤ πj ≤ 1,

m∑
j=1

πj = 1, (σ1, . . . , σm) ∈ �σ}.

There are many choices for the penalty function in (3). For inducing vector-wise sparsity
we may consider the group lasso penalty of the form Pλ(γ i) = λ‖γ i‖2 and the group 	0 penalty
Pλ(γ i) = λ2I(‖γ i‖2 �= 0)/2, where ‖ · ‖q denotes the 	q norm for q ≥ 0, and I(·) is the indicator
function. These penalty functions penalize the 	2 norm of each γ i vector to promote the entire
vector to be zero. Alternatively one may take Pλ(γ i) = ∑m

j=1 Pλ(|γij|), where Pλ(|γij|) is a penalty
function so as to induce element-wise sparsity. Some examples are the 	1 norm penalty (Donoho
& Johnstone, 1994; Tibshirani, 1996)

Pλ(γ i) = λ

m∑
j=1

|γij|, (5)

and the 	0 norm penalty (Antoniadis, 1997)

Pλ(γ i) = λ2

2

m∑
j=1

I(γij �= 0). (6)

Other common choices include the SCAD penalty (Fan & Li, 2001) and the MCP penalty (Zhang,
2010). In this article we mainly focus on using the element-wise penalization methods in RM2.

2.2. Thresholding-Embedded EM Algorithm for Penalized Estimation
In classical mixture regression problems the EM algorithm is commonly used to maximize the
likelihood, in which case the unobservable component labels are treated as missing data. We here
propose an efficient thresholding-embedded EM algorithm to maximize the proposed penalized
log-likelihood criterion. Consider

(θ̂, �̂) = arg max
θ∈�,�

⎧⎨⎩
n∑

i=1

log

⎧⎨⎩
m∑

j=1

πjφ
(
yi − x�

i βj − γijσj; 0, σ2
j

)⎫⎬⎭ −
n∑

i=1

m∑
j=1

Pλ(|γij|)
⎫⎬⎭ ,

where Pλ(·) is either the 	1 penalty function (5) or the 	0 penalty function (6). The proposed
method can be readily applied to other penalty forms such as group lasso and group 	0 penalties;
see the Appendix for more details.
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Let

zij =
{

1 if the ith observation is from the jth component;
0 otherwise.

Denote the complete data set by {(xi, zi, yi) : i = 1, 2, . . . , n}, where the component labels zi =
(zi1, zi2, . . . , zim) are not observable. The penalized complete log-likelihood function is

Jc
n(θ, �) = lcn(θ, �) −

n∑
i=1

m∑
j=1

Pλ(|γij|), (7)

where the complete log-likelihood is given by lcn(θ, �) = ∑n
i=1

∑m
j=1 zij log{πjφ

(
yi − x�

i βj −
γijσj; 0, σ2

j

)}.
In the E-step, given the current estimates θ(k) and �(k) (where k denotes the iteration number),

the conditional expectation of the penalized complete log-likelihood (7) is computed as follows:

Q(θ, � | θ(k), �(k)) =
n∑

i=1

m∑
j=1

p
(k+1)
ij

{
log πj + log φ

(
yi − x�

i βj − γijσj; 0, σ2
j

)}

−
n∑

i=1

m∑
j=1

Pλ(|γij|) (8)

where

p
(k+1)
ij = E(zij|yi; θ(k), �(k)) = π

(k)
j φ

(
yi − x�

i β
(k)
j − γ

(k)
ij σ

(k)
j ; 0, σ2(k)

j

)∑m
j=1 π

(k)
j φ

(
yi − x�

i β
(k)
j − γ

(k)
ij σ

(k)
j ; 0, σ2(k)

j

) . (9)

We then maximize (8) with respect to (θ, �) in the M-step. Specifically in the M-step, θ, and � are
alternatingly updated until convergence. For fixed � and σj , each βj can be solved explicitly from
a weighted least squares procedure. For fixed � and βj , as each σj appears in the mean structure,
it no longer has an explicit solution, but due to low dimension, it can be readily solved by standard
nonlinear optimization algorithms in which an augmented Lagrangian approach can be used for
handling the nonlinear constraints; an implementation is provided in the R package nloptr (Conn,
Gould, & Toint, 1991). Also when ignoring the ratio constraints in (4) the optimization problem
of the σj becomes separable and each σj can be updated more easily; in practice the constrained
estimation is performed only when the above simple solutions violate the ratio condition in (4).

For fixed θ, � is updated by maximizing

n∑
i=1

m∑
j=1

p
(k+1)
ij log φ

(
yi − x�

i βj − γijσj; 0, σ2
j

) −
n∑

i=1

m∑
j=1

Pλ(|γij|).

The problem is separable in each γij , and after some algebra, it can be shown that γij can be
updated by minimizing

1
2

(
γij − yi − x�

i βj

σj

)2

+ 1

p
(k+1)
ij

Pλ

(∣∣γij

∣∣) . (10)
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This one-dimensional problem admits an explicit solution. The solution of (10) when using the 	1
penalty or the 	0 penalty is given by a corresponding thresholding rule 
soft or 
hard , respectively:

γ̂ij = 
soft(ξij; λ∗
ij) = sgn(ξij)(|ξij| − λ∗

ij)+, (11)

γ̂ij = 
hard(ξij; λ∗
ij) = ξijI(|ξij| > λ∗

ij), (12)

where ξij = (yi − x�
i βj)/σj , a+ = max(a, 0), λ∗

ij is taken as λ/p
(k+1)
ij in 
soft , and λ∗

ij is set as

λ/

√
p

(k+1)
ij in 
hard . See the Appendix for details on handling group penalties on the γ i, such as

the group 	1 penalty and the group 	0 penalty.
The proposed thresholding-embedded EM algorithm for any fixed tuning parameter λ is

presented as follows:

Algorithm 1 Thresholding-Embedded EM algorithm for RM2

Initialize θ(0) and �(0). Set k ← 0.
repeat

(1) E-step: Compute Q(θ, � | θ(k), �(k)) as in (8) and (9).
(2) M-step: Update π

(k+1)
j = ( ∑n

i=1 p
(k+1)
ij

)
/n and update the other parameters by maxi-

mizing Q
(
θ, �|θ(k), �(k)), that is, start from

(
β(k), σ2(k)

j , �(k)) and iterate the following steps

until convergence to obtain
(
β(k+1), σ2(k+1)

j , �(k+1)):

(2.a) βj ←
(

n∑
i=1

xix�
i p

(k+1)
ij

)−1 (
n∑

i=1

xip
(k+1)
ij (yi − γijσj)

)
, j = 1, . . . , m,

(2.b) (σ1, . . . , σm) ← arg max
(σ1,...,σm)∈�σ

n∑
i=1

m∑
j=1

p
(k+1)
ij log φ(yi − x�

i βj − γijσj; 0, σ2
j ),

(2.c) γij ← 
(ξij; λ∗
ij), i = 1, . . . , n, j = 1, . . . , m,

where 
 denotes one of the thresholding rules in (11–12) depending on the penalty form
adopted.

k ← k + 1.
until convergence

The penalized log-likelihood does not decrease in any of the E- or M-step iterations, that is,

Jn

(
θ̂

(k+1)
, �̂

(k+1)) ≥ Jn(θ̂
(k)

, �̂
(k)

)

for all k ≥ 0. This property ensures the convergence of Algorithm 1.
The proposed algorithm can be readily modified to handle the special case of equal variances

in model (1) with σ2
1 = · · · = σ2

m = σ2 for some σ2 > 0. In the Algorithm σj shall be replaced
by σ. The iterating steps stay the same with the exception of step (2.b) which becomes

(2.b) σ2 ← arg max
σ2>0

n∑
i=1

m∑
j=1

p
(k+1)
ij log φ(yi − x�

i βj − γijσ; 0, σ2).
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The proposed EM algorithm is implemented for a fixed tuning parameter λ. In practice we
need to choose an optimal λ and hence an optimal set of parameter estimates. We construct a
Bayesian information criterion (BIC) for tuning parameter selection (e.g., Yi, Tan, & Li, 2015),

BIC(λ) = −l(λ) + log(n)df(λ),

where l(λ) is the mixture log-likelihood function evaluated at the solution of tuning parameter
λ, and df (λ) is the estimated model degrees of freedom. Following Zou (2006) we estimate the
degrees of freedom using the sum of the number of nonzero elements in �̂ and the number of
component parameters in the mixture model. We fit the model for a certain number, say 100, of
λ values which are equally spaced on the log scale in an interval (λmin, λmax), where λmin is the
smallest λ value for which roughly 50% of the entries in � are nonzero, and λmax corresponds
to the largest λ value for which � is estimated as a zero matrix. Other options for determining
the optimal solution along the solution path are available as well (e.g., Cp, AIC, and GCV).
For example one may discard a certain percentage of the observations as outliers if such prior
knowledge is available. In the proposed model as the mean shift parameter of each observation can
be interpreted as the number of standard deviations away from the observation to the component
mean structure one may examine the magnitude of the mean-shift parameters in order to determine
the number of outliers.

3. ROBUSTNESS OF RM2

The outlier detection performance of RM2 may depend on the choice of the penalty function. To
understand the robustness properties of RM2 we show, with a suitably chosen penalty function, that
RM2 has strong connections with some familiar robust methods including the trimmed likelihood
and modified M-estimation methods. Our main results are summarized in Theorems 1 and 2 that
follow. Their proofs are provided in the Appendix.

Theorem 1. Consider RM2 with a group 	0 penalization, that is,

(θ̂, �̂) = arg max
θ∈�,�

⎡⎣ n∑
i=1

log

⎧⎨⎩
m∑

j=1

πjφ
(
yi − x�

i βj − γijσj; 0, σ2
j

)⎫⎬⎭ − λ2

2

n∑
i=1

I(‖γ i‖2 �= 0)

⎤⎦ .

(13)

Denote Ŝ = {i; ‖γ̂ i‖ �= 0}, and h = n − |Ŝ|. Then

(θ̂, Ŝ) = arg max
θ∈�,S:|S|=n−h

⎡⎣∑
i∈Sc

log

⎧⎨⎩
m∑

j=1

πjφ
(
yi − x�

i βj; 0, σ2
j

)⎫⎬⎭
+(n − h) log

⎧⎨⎩
m∑

j=1

πjφ
(
0; 0, σ2

j

)⎫⎬⎭
⎤⎦ .

In particular, when σ2
1 = · · · = σ2

m = σ2 and σ2 > 0 is assumed known, the mean-shift penal-
ization approach is equivalent to the trimmed likelihood method, that is,

(π̂, β̂) = arg max
π,β,S:|S|=n−h

⎡⎣∑
i∈Sc

log

⎧⎨⎩
m∑

j=1

πjφ
(
yi − x�

i βj; 0, σ2)⎫⎬⎭
⎤⎦ . (14)
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In Theorem 1 we establish the connection between RM2 and the trimmed likelihood method.
In the special case of equal and known variances the two methods turn out to be entirely equivalent.
This result partly explains the robustness property of RM2 and shows that the trimmed likelihood
estimation can be conveniently achieved with the proposed penalized likelihood approach.

In the classical EM algorithm for solving the normal mixture model the regression coefficients
are updated based on weighted least squares. A natural idea with which to robustify the normal
mixture model is hence to replace weighted least squares with some robust estimation criterion,
such as using M-estimation. Bai, Yao, & Boyer (2012) pursued this idea and proposed a modified
EM algorithm which was robust. Interestingly our RM2 approach is closely connected to this
modified EM algorithm. Consider RM2 with an element-wise sparsity-inducing penalty,

(θ̂, �̂) = arg max
θ∈�,�

⎧⎨⎩
n∑

i=1

log

⎧⎨⎩
m∑

j=1

πjφ
(
yi − x�

i βj − γijσj; 0, σ2
j

)⎫⎬⎭ −
n∑

i=1

m∑
j=1

Pλ(|γij|)
⎫⎬⎭ .

From the thresholding-embedded EM algorithm, define Ŵj = diag(p̂1j, . . . , p̂nj), and ŵj =
(λ∗

1j, . . . , λ
∗
nj)�. Here for simplicity we omit the superscript (k) which denotes the iteration num-

ber. Then the parameter estimates satisfy

γ̂j = 
( 1
σ̂j

(y − Xβ̂j), ŵj), and β̂j = (X�ŴjX)−1X�Ŵj(y − σ̂j γ̂j), (15)

where 
 is defined element-wise.

Theorem 2. Consider RM2 with an element-wise sparsity-inducing penalization, and define
(θ̂, �̂) as in (15). Then the parameter estimates satisfy

X�Ŵ jψ

(
1
σ̂j

(y − Xβ̂j), ŵj

)
= 0, j = 1, . . . , m, (16)

where ψ(t; λ) = t − 
(t; λ).

In Theorem 2 the score Equation (16) defines an M-estimator. Interestingly, as shown by
She & Owen (2011), there is a general correspondence between the thresholding rules and the
criteria used in M-estimation. It can be easily verified that for 
soft , the corresponding ψ function
is the well-known Huber’s ψ. Similarly 
hard corresponds to the Skipped Mean loss, and the
SCAD thresholding corresponds to a special case of the Hampel loss. For robust estimation it is
well understood that a redescending ψ function is preferable, which corresponds to the use of a
nonconvex penalty in RM2. In Bai, Yao, & Boyer (2012) the criterion parameter λ in ψ(t; λ) is
a prespecified value, and it stays the same for any input (yi − x�

i β̂j)/σ̂j . In contrast the criterion
parameter becomes adaptive in RM2, with its overall magnitude determined by the penalization
parameter, whose choice is data-driven and based on certain information criterion.

4. SIMULATION STUDY

4.1. Simulation Design
We consider two mixture regression models in which the observations are contaminated with
additive outliers. We evaluate the finite sample performance of RM2 and compare it with several
existing methods. As we mainly focus on investigating outlier detection performance we have set
p = 2 to keep the regression components relatively simple.
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Model 1: For each i = 1, . . . , n, yi is independently generated with

yi =
{

1 − xi1 + xi2 + γi1σ + εi1, if zi1 = 1,
1 + 3xi1 + xi2 + γi2σ + εi2, if zi1 = 0,

where zi1 is a component indicator generated from a Bernoulli distribution with P(zi1 = 1) = 0.3;
xi1 and xi2 are independently generated from a N(0, 1); and the error terms εi1 and εi2 are
independently generated from a N(0, σ2) with σ2 = 1.

Model 2: For each i = 1, . . . , n, yi is independently generated with

yi =
{

1 − xi1 + xi2 + γi1σ1 + εi1, if zi1 = 1,
1 + 3xi1 + xi2 + γi2σ2 + εi2, if zi1 = 0,

where zi1 is a component indicator generated from a Bernoulli distribution with P(zi1 = 1) = 0.3;
xi1 and xi2 are independently generated from a N(0, 1), and the error terms εi1 and εi2 are
independently generated from a N(0, σ2

1 ) and a N(0, σ2
2 ), respectively, with σ2

1 = 1 and σ2
2 = 4.

We consider two proportions of outliers, either 5 or 10%. The absolute value of any nonzero
mean-shift parameter, |γij|, is randomly generated from a uniform distribution between 11 and 13.
Specifically in Model 1 we first generate n = 400 observations according to Model 1 with all γij

set to zero; when there are 5% (or 10%) outliers, 5 (or 10) observations from the first component are
then replaced withyi = 1 − xi1 + xi2 − |γi1|σ + εi1 whereσ = 1,xi1 = 2, andxi2 = 2, and 15 (or
30) observations from the second component are replaced with yi = 1 + 3xi1 + xi2 + |γi2|σ + εi2
where σ = 1, xi1 = 2, and xi2 = 2. In Model 2 the additive outliers are generated in the same
fashion as in Model 1, except that the additive mean-shift terms become −|γi1|σ1 or |γi2|σ2, with
σ1 = 1 and σ2 = 2. For each setting we repeat the simulation 200 times.

We compare our proposed RM2 estimator when using 	1 and 	0 penalties, denoted as RM2(	1)
and RM2(	0), respectively, to several existing robust regression estimators and the MLE of the
classical normal mixture regression model. To examine the true potential of the RM2 approaches,
we report an “oracle” estimator for each penalty form, which is defined as the solution whose
number of selected outliers is equal to (or is the smallest number greater than) the number of true
outliers on the solution path. This is the penalized regression estimator we would have obtained
if the true number of outliers was known a priori. All the estimators considered are listed below:

1. The MLE of the classical normal mixture regression model (MLE).
2. The trimmed likelihood estimator (TLE) proposed by Neykov et al. (2007), with the percentage

of trimmed data set to either 5% (TLE0.05) or 10% (TLE0.10). We note that TLE0.05 (TLE0.10)
can be regarded as the oracle TLE estimator when there are 5% (10%) outliers.

3. The robust estimator based on modified EM algorithm with bisquare loss (MEM-bisquare)
proposed by Bai, Yao, & Boyer (2012).

4. The MLE of a mixture linear regression model that assumes a t-distributed error (Mixregt) as
proposed by Yao, Wei, & Yu. (2014).

5. The RM2 element-wise estimators using the 	0 penalty (RM2(	0)) and the 	1 penalty
(RM2(	1)), and their oracle counterparts RM2

O(	0) and RM2
O(	1).

For fitting mixture models there are well known label switching issues (Celeux, Hurn, &
Robert, 2000; Stephens, 2000; Yao & Lindsay, 2009; Yao, 2012). In our simulation study, as
the truth is known, the labels are determined by minimizing the Euclidean distance from the true
parameter values. To evaluate estimator performance we report the median squared errors (MeSE)
and the mean squared errors (MSE) of the resulting parameter estimates. To evaluate the outlier
detection performance we report three measures: the average proportion of masking (M), that is,
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Table 1: Outlier detection results and MSE/MeSE of parameter estimates for Model 1

5% outliers

M S JD MSE(π̂)(se) MeSE(π̂) MSE(β̂)(se) MeSE(β̂) MSE(σ̂)(se) MeSE(σ̂)

RM2(	0) 0.000 0.001 1.000 0.001(0.001) 0.001 0.048(0.002) 0.039 0.003(0.001) 0.001

RM2
O(	0) 0.000 0.000 1.000 0.001(0.001) 0.001 0.048(0.002) 0.038 0.003(0.001) 0.001

RM2(	1) 0.000 0.006 1.000 0.001(0.001) 0.001 0.336(0.008) 0.327 0.216(0.004) 0.223

RM2
O(	1) 0.000 0.003 1.000 0.001(0.001) 0.001 0.184(0.003) 0.143 0.662(0.002) 0.666

TLE0.05 0.000 0.007 1.000 0.002(0.001) 0.001 0.047(0.002) 0.037 0.002(0.001) 0.001

TLE0.10 0.000 0.003 1.000 0.002(0.001) 0.001 0.085(0.004) 0.067 0.025(0.001) 0.023

MEM-bisquare 0.000 0.005 1.000 0.002(0.001) 0.001 0.050(0.002) 0.041 0.007(0.001) 0.004

Mixregt 0.000 0.078 1.000 0.003(0.001) 0.002 0.090(0.004) 0.080 0.123(0.002) 0.121

MLE – – – 0.470(0.002) 0.680 17.20(0.658) 20.33 2.912(0.023) 2.920

10% outliers

M S JD MSE(π̂)(se) MeSE(π̂) MSE(β̂)(se) MeSE(β̂) MSE(σ̂)(se) MeSE(σ̂)

RM2(	0) 0.000 0.001 1.000 0.001(0.001) 0.001 0.055(0.003) 0.044 0.007(0.001) 0.005

RM2
O(	0) 0.000 0.000 1.000 0.001(0.001) 0.001 0.054(0.003) 0.044 0.006(0.001) 0.005

RM2(	1) 0.615 0.005 0.335 0.028(0.007) 0.001 6.505(0.324) 7.702 0.778(0.011) 0.695

RM2
0(	1) 0.007 0.001 0.750 0.001(0.001) 0.001 4.973(0.056) 4.894 0.581(0.002) 0.569

TLE0.05 0.749 0.050 0.000 0.274(0.018) 0.046 50.94(1.100) 49.08 0.298(0.009) 0.275

TLE0.10 0.000 0.007 1.000 0.002(0.001) 0.001 0.057(0.003) 0.046 0.002(0.001) 0.001

MEM-bisquare 0.639 0.061 0.145 0.279(0.020) 0.043 39.81(1.306) 45.74 0.143(0.008) 0.120

Mixregt 0.313 0.096 0.555 0.212(0.019) 0.005 18.05(1.465) 0.174 0.058(0.002) 0.056

MLE – – – 0.075(0.010) 0.014 11.55(0.262) 10.09 4.462(0.027) 4.459

The standard errors (se) of the MSE values are reported in the subscripts.

the fraction of undetected outliers; the average proportion of swamping (S), that is, the fraction
of good points labeled as outliers; and the joint detection rate (JD), that is, the proportion of
simulations with 0 masking.

4.2. Simulation Results
The simulation results for Model 1 (equal variances case) are reported in Table 1. It is apparent that
MLE fails miserably in the presence of severe outliers, so in the following we focus on discussing
only the robust methods. In the case of 5% outliers all methods (except MLE) perform well in
detecting outliers. For parameter estimation, RM2(	1) and RM2

O(	1) perform much worse than
other methods. In the case of 10% outliers, RM2(	0) and TLE0.10 work well, whereas RM2(	1),
TLE0.05, MEM-bisquare, and Mixregt have much lower joint outlier detection rates and hence
larger MeSE or MSE. The non-robustness of RM2(	1) is as expected, as it corresponds to using
Huber’s loss which is known to suffer from masking effects. This can also be seen from the
penalized regression point of view. As the 	1 regularization induces sparsity it also results in a
heavy shrinkage effect. Consequently the method tends to accommodate the outliers in the model,
leading to biased and severely distorted estimation results. In contrast the 	0 penalization does
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Figure 1: 3D scatter plot for one data set simulated from Model 1. Two regression planes estimated by
RM2(	0) for the two different components are displayed and the 5% outliers are marked in blue.

not offer any shrinkage, so it is much harder for an outlier to be accommodated. Our results are
consistent with the finding of She and Owen (2011) in the context of linear regression.

Figure 1 shows a 3-dimensional scatter plot of one typical data set simulated from Model 1,
with two regression planes estimated by RM2(	0). The outliers are marked in blue. It can be seen
that the regression planes fit the bulk of the good observations from the two components quite
well and that the estimates are not influenced by the outliers.

Table 2 reports the simulation results for Model 2 (unequal variances case). The conclusions
are similar to those for the equal variances case. Briefly, with 5% outliers, all methods (except
MLE) have high joint outlier detection rates. When there are 10% outliers RM2(	0) and the
trimmed likelihood methods continue to perform best. In either case the estimation accuracy of
RM2(	1) is much lower than that of RM2(	0). Also a 3-dimensional scatter plot of one typical
simulated data set is shown in Figure 2 and clearly demonstrates that the estimates of RM2(	0)
are not influenced by the outliers.

In summary, TLE0.10 yields good results in terms of outliers detection in all cases but has
larger MSE for the 5% outliers case. TLE0.05 fails to work in the case of 10% outliers.

RM2(	0) is comparable to oracle TLE and RM2
O(	0) in terms of both outlier detection and

MeSE in most cases except for the 10% outlier case with small |γ|. RM2(	1) with a large |γ| is
comparable to RM2(	0) and TLE in terms of outlier detection but fails to work with a small |γ|.
As expected MLE is sensitive to outliers.

5. TONE PERCEPTION DATA ANALYSIS

We apply the proposed robust approach to tone perception data (Cohen, 1984). In the tone percep-
tion experiment of Cohen (1984) a pure fundamental tone with electronically generated overtones
added was played to a trained musician. The experiment recorded 150 trials by the same musician.
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Table 2: Outlier detection results and MSE/MeSE of parameter estimates for Model 2

5% outliers

M S JD MSE(π̂)(se) MeSE(π̂) MSE(β̂)(se) MeSE(β̂) MSE(σ̂)(se) MeSE(σ̂)

RM2(	0) 0.001 0.001 0.995 0.004(0.001) 0.002 0.111(0.009) 0.088 0.038(0.004) 0.024

RM2
O(	0) 0.001 0.001 0.995 0.004(0.001) 0.002 0.111(0.012) 0.087 0.059(0.077) 0.024

RM2(	1) 0.000 0.005 1.000 0.001(0.001) 0.001 0.365(0.010) 0.344 1.448(0.025) 1.436

RM2
O(	1) 0.000 0.003 1.000 0.001(0.001) 0.001 0.740(0.041) 0.699 1.799(0.108) 1.706

TLE0.05 0.004 0.008 0.915 0.077(0.002) 0.002 9.160(2.535) 0.096 0.502(0.011) 0.023

TLE0.10 0.008 0.032 0.845 0.259(0.003) 0.007 1.528(0.155) 0.219 1.756(0.115) 0.655

MEM-bisquare 0.062 0.006 0.915 0.087(0.001) 0.004 9.835(2.242) 0.115 0.637(0.091) 0.102

Mixregt 0.000 0.078 1.000 0.008(0.001) 0.003 0.421(0.154) 0.182 0.683(0.010) 0.655

MLE – – – 0.761(0.001) 0.763 43.20(0.715) 41.84 186.2(1.014) 186.5

10% outliers

M S JD MSE(π̂)(se) MeSE(π̂) MSE(β̂)(se) MeSE(β̂) MSE(σ̂)(se) MeSE(σ̂)

RM2(	0) 0.000 0.000 1.000 0.006(0.001) 0.005 0.124(0.005) 0.106 0.057(0.003) 0.052

RM2
O(	0) 0.000 0.000 1.000 0.006(0.001) 0.005 0.121(0.005) 0.106 0.056(0.010) 0.043

RM2(	1) 0.030 0.012 0.955 0.002(0.001) 0.001 1.607(0.125) 1.255 4.706(0.428) 3.489

RM2
O(	1) 0.001 0.001 0.970 0.001(0.001) 0.001 1.603(0.075) 1.546 1.959(0.170) 1.959

TLE0.05 0.656 0.018 0.000 0.654(0.015) 0.679 98.20(2.491) 90.68 1.960(0.097) 1.970

TLE0.10 0.003 0.008 0.900 0.063(0.009) 0.002 10.37(1.956) 0.125 0.403(0.038) 0.018

MEM-bisquare 0.722 0.012 0.010 0.622(0.009) 0.652 94.93(1.956) 86.53 2.397(0.062) 2.291

Mixregt 0.461 0.097 0.200 0.516(0.018) 0.638 70.46(2.632) 81.49 0.968(0.028) 0.998

MLE – – – 0.593(0.010) 0.593 40.89(0.743) 38.98 188.1(2.879) 195.2

The standard errors (se) of the MSE values are reported in the subscripts.

The overtones were determined using a stretching ratio, which is the ratio between an adjusted
tone and the fundamental tone. The purpose of this experiment was to see how this tuning ratio
affects the perception of the tone and to determine if either of two musical perception theories
was reasonable.

We compare our proposed RM2(	0) estimator and the traditional MLE after adding ten
outliers (1.5, a), where a = 3 + 0.1i, and i = 1, 2, 3, 4, 5 and (3, b), where b = 1 + 0.1i, and
i = 1, 2, 3, 4, 5 into the original data set. Table 3 reports the parameter estimates. For the orig-
inal data which contained no outliers, the proposed RM2(	0) estimator yields similar parameter
estimates to that of the traditional MLE. This result shows that our proposed RM2(	0) method
performs as well as the traditional MLE. If there are outliers in the data the proposed RM2(	0)
estimator is not influenced by them and yields similar parameter estimates to those for the case
of no outliers. However the MLE yields nonsensical parameter estimates.

6. DISCUSSION

We have proposed a robust mixture regression approach based on a mean-shift normal mixture
model parameterization, generalizing the work of She & Owen (2011), Lee, MacEachern, &
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Figure 2: 3D scatter plot for one data set simulated from Model 2. Two regression planes estimated by
RM2 (	0) for the two different components are displayed and the 5% outliers are marked in blue.

Jung (2012), and Yu, Chen, & Yao (2015). The method is shown to have strong connections
with several well-known robust methods. The proposed RM2 method with the 	0 penalty has
comparable performance to its oracle counterpart and the oracle Trimmed Likelihood Estimator
(TLE).

There are several directions for future research. The oracle RM2 estimators may have better
performance than the BIC-tuned estimators in some cases; therefore we can further improve the
performance of RM2 by improving tuning parameter selection. Garcı́a-Escudero et al. (2010)
showed that the traditional definition of breakdown point is not an appropriate measure with
which to quantify the robustness of mixture regression procedures, as the robustness of these pro-
cedures is not only data dependent but also cluster dependent. It is thus interesting to consider the
construction and investigation of other robustness measures for a mixture model setup. Although
we do not discuss the selection of the number of cluster components in this article it remains a
pressing issue in many mixture modelling problems. The proposed RM2 approach can be further
extended to conduct simultaneous variable selection and outlier detection in mixture regression.

Table 3: Parameter estimation for the tone perception data

π1 π2 β01 β11 β02 β12 σ

MLE No outliers 0.326 0.674 −0.038 1.008 1.893 0.056 0.084

10 outliers 0.082 0.918 5.250 −1.311 1.298 0.359 0.224

Hard No outliers 0.311 0.689 0.049 0.947 1.904 0.079 0.100

10 outliers 0.276 0.724 0.051 0.950 1.900 0.071 0.100
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Finally our proposed robust regression approach is based on penalized estimation, for which sta-
tistical inference is an active research area; see, for example, Berk et al. (2013), Tibshirani et al.
(2014), and Lee et al. (2016). It is pressing to investigate the inference problem in the context of
robust estimation and outlier detection.

APPENDIX
Handling Group Penalties
The proposed EM algorithm can be readily modified to handle the group lasso penalty and the
group 	0 penalty on the γ i. The only change is in the way of updating � in the M step when θ is
fixed.

For the group lasso penalty, Pλ(γ i) = λ‖γ i‖2, � is updated by maximizing

n∑
i=1

m∑
j=1

p
(k+1)
ij log φ

(
yi − x�

i βj − γijσj; 0, σ2
j

) − λ

n∑
i=1

‖γ i‖2.

The problem is separable in each γ i. After some algebra the problem for each γ i has exactly the
same form as the problem considered in Qin, Scheinberg, & Goldfarb (2013),

γ̂ i = arg min
γ i

1
2
γ�

i Wiγ i − a�
i γ i + λ‖γ i‖2, (17)

where Wi is an m × m diagonal matrix with diagonal elements
{

p
(k+1)
ij , j = 1, . . . , m

}
,

rij = yi − x�
i βj , and ai =

(
p

(k+1)
i1 ri1

σ1
, . . . ,

p
(k+1)
im

rim
σm

)�
. The detailed algorithm is given in Qin,

Scheinberg, & Goldfarb (2013). The solution of (17) can be expressed as

γ̂ i =
{

0 if ‖i‖2 ≤ λ;
�i(�iWi + λI)−1ai if ‖ai‖2 > λ,

in which �i is the root of

φ(�i) = 1 − 1
‖f (�i)‖2

,

where

‖f (�i)‖2
2 =

m∑
j=1

(
p

(k+1)
ij rij/σj

)2(
p

(k+1)
ij �i + λ

)2 .

For group 	0 penalty � is updated by maximizing

n∑
i=1

m∑
j=1

p
(k+1)
ij log φ

(
yi − x�

i βj − γijσj; 0, σ2
j

) − λ2

2

n∑
i=1

I(‖γ i‖2 �= 0).

The problem is separable in each γ i, that is,

γ̂ i = arg max
γ i

⎧⎨⎩
m∑

j=1

p
(k+1)
ij log φ

(
yi − x�

i βj − γijσj; 0, σ2
j

) − λ2

2
I(‖γ i‖2 �= 0)

⎫⎬⎭ .
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This has a closed-form solution. Define γ̃ i such that γ̃ij = (yi − x�
i βj)/σj for j = 1, . . . , m. Then

γ̂ i =
⎧⎨⎩ 0 if

∑m
j=1 p

(k+1)
ij log φ

(
yi − x�

i βj; 0, σ2
j

) ≥ ∑m
j=1 p

(k+1)
ij log φ

(
0; 0, σ2

j

) − λ2

2 ;
γ̃ i if

∑m
j=1 p

(k+1)
ij log φ

(
yi − x�

i βj; 0, σ2
j

)
<

∑m
j=1 p

(k+1)
ij log φ

(
0; 0, σ2

j

) − λ2

2 .

Proof of Theorem 1
Recall (θ̂, �̂) is the maximizer of the penalized log-likelihood problem (13). Then we have

�̂ = arg max
�

⎡⎣ n∑
i=1

log

⎧⎨⎩
m∑

j=1

π̂jφ
(
yi − x�

i β̂j − γijσ̂j; 0, σ̂2
j

)⎫⎬⎭ − λ2

2

n∑
i=1

I(‖γ i‖2 �= 0)

⎤⎦ .(18)

The problem is separable in each γ i, that is,

γ̂ i = arg max
γ i

⎡⎣log

⎧⎨⎩
m∑

j=1

π̂jφ
(
yi − x�

i β̂j − γijσ̂j; 0, σ̂2
j

)⎫⎬⎭ − λ2

2
I(‖γ i‖2 �= 0)

⎤⎦ . (19)

If γ̂ i = 0 (19) becomes

log

⎧⎨⎩
m∑

j=1

π̂jφ
(
yi − x�

i β̂j; 0, σ̂2
j

)⎫⎬⎭ ,

and if γ̂ i �= 0, it must be true that γ̂ij = (yi − x�
i β̂j)/σ̂j , j = 1, . . . , m, and (19) then becomes

log

⎧⎨⎩
m∑

j=1

π̂jφ
(
0; 0, σ̂2

j

)⎫⎬⎭ − λ2

2
.

It then follows that the maximum of the penalized log-likelihood (13) is

∑
i∈Ŝc

log

⎧⎨⎩
m∑

j=1

π̂jφ
(
yi − x�

i β̂j; 0, σ̂2
j

)⎫⎬⎭ +
∑
i∈Ŝ

log

⎧⎨⎩
m∑

j=1

π̂jφ
(
0; 0, σ̂2

j

)⎫⎬⎭ − λ2

2
(n − h). (20)

For a given tuning parameter λ the number of nonzero γ̂ i vectors is determined and hence h is a
constant. This proves the first part of the theorem.

When σ2
1 = · · · = σ2

m = σ2 and σ2 > 0 is assumed known the second term in (20) becomes∑
i∈Ŝ log{1/(

√
2πσ)} and hence is a constant. It follows that maximizing (13) is equivalent to

solving (14), in which S is an index set with the same cardinality as Ŝ. We recognize that (14) is
exactly a trimmed likelihood problem. This completes the proof. �
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Proof of Theorem 2
Consider element-wise penalization in (15). Based on the thresholding-embedded EM algorithm
we write

�̂ = arg max
�

⎧⎨⎩
n∑

i=1

m∑
j=1

p̂ij log φ
(
yi − x�

i β̂j − γijσ̂j; 0, σ̂2
j

) −
n∑

i=1

m∑
j=1

Pλ(|γij|)
⎫⎬⎭ .

The above problem is separable in each γij ,

γ̂ij = arg max
γij

{
p̂ij log φ

(
yi − x�

i β̂j − γijσ̂j; 0, σ̂2
j

) − Pλ(|γij|)
}

= arg min
γij

1
2

(
γij − yi − x�

i β̂j

σ̂j

)2

+ 1
p̂ij

Pλ(|γij|),

It can be easily shown that

γ̂ij = 


(
yi − x�

i β̂j

σ̂j

, λ∗
ij

)
,

where the correspondence of (Pλ(·), λ∗
ij , 
) is discussed in Section 2.2. For example using the

	1 penalty leads to 
 = 
soft and λ∗
ij = λ/p

(k+1)
ij ; using the 	0 penalty leads to 
 = 
hard and

λ∗
ij = λ/

√
p

(k+1)
ij .

Define Ŵj = diag(p̂1j, . . . , p̂nj), and ŵj = (λ∗
1j, . . . , λ

∗
nj)�. Then we can write

γ̂j = 


(
1
σ̂j

(
y − Xβ̂j

)
, ŵj

)
, and β̂j = (X�ŴjX)−1X�Ŵj(y − σ̂j γ̂j).

Now, consider any ψ(t; λ) function satisfying 
(t; λ) + ψ(t; λ) = t for any t. We have

X�Ŵjψ

(
1
σ̂j

(y − Xβ̂j), ŵj

)
= X�Ŵj

{
1
σ̂j

(y − Xβ̂j) − 


(
1
σ̂j

(y − Xβ̂j), ŵj

)}
= X�Ŵj

{
1
σ̂j

y − 1
σ̂j

X(X�ŴjX)−1X�Ŵj(y − σ̂j γ̂j) − γ̂j

}
= 1

σ̂j

X�Ŵjy − 1
σ̂j

X�Ŵj(y − σ̂j γ̂j) − X�Ŵj γ̂j

= 0.

It follows that solving βj is equivalent to solving the score equation in (16), which completes the
proof. �
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